

Seat	No.	

HU-4

B. Sc. (Sem. II) (CBCS) (W.E.F. 2019)

Examination

May - 2023

Chemistry: C - 201

(New Course)

Time: $2\frac{1}{2}$ / Total Marks: 70

Instructions:

(1) This question paper contains five questions and all are compulsory.

4

- (2) Figures to the right indicate full marks.
- 1 (a) Answer the following: 1 mark each
 - (1) Define Radius ratio
 - (2) What is Semiconductor?
 - (3) Give one example of Hexadentate Ligand.
 - (4) Define Isomerism.
 - (b) Answer in brief: (any one of the following) 2 marks each 2
 - (1) Explain Schottky defect.
 - (2) Explain Hydration isomerism with example.
 - (c) Answer in detail: (any one of the following) 3 marks each 3
 - (1) Derive the r^+/r^- ratio for tetrahedral structure.
 - (2) Explain Ionization isomerism with an example.
 - (d) Write a short note on any one of the following: 5 marks each 5
 - (1) Explain Born Haber cycle in detail.
 - (2) Explain different types of ligands along with an example of each of them,
- **2** (a) Answer the following: 1 mark each

1) What is general outer electronic configuration of transition metal elements?

- (2) Write the Braggs' equation.
- (3) Define a Unit Cell.
- (4) What is an Amorphous Solid?

HU-4] 1 [Contd...

		(1)	Give the names, symbols, atomic numbers and electronic configurations of the First Transition Series Florent		
		(2)	configurations of the First Transition Series Element Explain in short the importance of X-ray for crysta		
		(2)	structure.	ai	
	(c)	Ans	wer in detail: (any one of the following: 3 marks each	ch 3	
	. /	(1)			
			transition series elements.		
		(2)	Give the names and the structure of different types of	of	
			cubic lattices.		
	(d)	Writ	te a short note on any one of the following: 5 marks	each 5	
		(1)	Explain in detail the magnetic properties of First Transition Series Elements along with the formula for		
			calculating the magnetic moment.		
		(2)	Discuss the Laws of Crystallography with figures an	d	
			diagrams wherever necessary.		
3	(a)	Ans	wer the following: 1 mark each	4	
	, ,	(1)	What are Cycloalkanes?		
		(2)	Give the General formula of cycle alkanes.		
		(3)	The smallest cycloalkane is		
		(4)	Which conformer is most stable for n-butane?		
	(b)	Ans	wer in brief: (any one of the following) 2 marks each	2	
		(1)	Explain any two preparation methods for small rin cycloalkanes.	g	
		(2)	Give reasons: Why cyclopropane is more reactive that cyclohexane?	n	
	(c)	Ans	wer in detail: (any one of the following) 3 marks each	ch 3	
		(1)	Discuss any two addition reactions of cycloalkanes.		
		(2)	Explain different types of strains in the cycloalkanes		
	(d)	Write a short note on any one of the following: 5 marks each			
		(1)	Explain conformational analysis of Ethane.	_	
		(2)	Write a short note on Bayer strain theory wit limitations.	h	
4	(a)	Ans	wer the following: 1 mark each	4	
		(1)	What is a sigma complex in Organic Reaction Mechanisms?		
		(2)	Define annulenes.		
		(3)	Give examples of Meta directing groups.		
		(4)	Give examples of aromatic compounds.		
HU-	-4]		2 [C	ontd	

(b) Answer in brief: (any one of the following) 2 marks each

2

	(b)	Answer in brief: (any one of the following) 2 marks each	2	
		(1) Explain the effect of substituents on reactivity.		
		(2) How many π electrons are present in Anthracene?		
	(c)	Answer in detail: (any one of the following) 3 marks each	3	
		(1) Explain Huckel's rule.		
		(2) Discuss the limitations of Friedel craft reactions.		
	(d)	Write a short note on any one of the following: 5 marks each	5	
		(1) Explain Nitration of Benzene with Mechanism.		
		(2) Explain Friedel craft alkylation reaction with mechanism.		
5	(a)	Answer the following: 1 mark each	4	
		(1) What is the term degree of hydrolysis?		
		(2) Give the equation of relation between K_a and K_b .		
		(3) NH ₄ Cl is salt of acid and base.		
		(4) Give an example of a weak electrolyte.		
	(b)	Answer in brief: (any one of the following) 2 marks each	2	
		(1) Give an example of salt of weak acid and strong base		
		and strong acid and weak base.		
		(2) Explain buffer capacity.		
	(c)	Answer in detail: (any one of the following) 3 marks each		
		(1) Discuss common ion effect.		
		(2) The solubility of BaSO ₄ is 2.33×10^{-4} gm/ml at 20° C,		
		calculate the solubility product of BaSO ₄ assuming that		
		the salt is completely ionized.		
	(d)	Write a short note on any one of the following: 5 marks each	5	
		(1) Derive the equation for the pH of acidic and basic buffer		
		solution.		
		(2) Derive relation between K_h , K_w and K_a . Relation between		
		K _h and degree of hydrolysis and pH for salt of strong		
		acid and weak base.		